7.3 Testing Individual Coefficients

Let’s test \(H_0: \beta_1 = 0\) versus \(H_a: \beta_1 \neq 0\). Recall that if the null hypothesis holds, then \[\hat{\beta}_1/se({\beta_1}) \sim t_{n-2}\] where \(t_{n-2}\) denotes t-distribution with \(n-2\) degrees of freedom.

Recall from above, the summary() output reports a t-value for \(\beta_1\) (Y2012) of 21.84.

summary(lin.model)
## 
## Call:
## lm(formula = Y2016 ~ Y2012, data = election)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.079300 -0.022713  0.000465  0.019404  0.061641 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.02235    0.02148  -1.041    0.303    
## Y2012        0.95295    0.04364  21.838   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03152 on 48 degrees of freedom
## Multiple R-squared:  0.9086, Adjusted R-squared:  0.9066 
## F-statistic: 476.9 on 1 and 48 DF,  p-value: < 2.2e-16

Not surprisingly, the p-value for this t-statistic is extremely small.